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Abstract. Lennard-Jones parameters for use in combustion modeling, as transport 

parameters and in pressure-dependent rate-coefficient calculations as collision rate 

parameters, are calculated from accurate full-dimensional intermolecular potentials. 

Several first-principles theoretical methods are considered. In the simplest approach, the 

intermolecular potential is isotropically averaged and used to determine Lennard-Jones 

parameters. This method works well for small species, but it is not suitable for larger 

species due to unphysical averaging over the repulsive wall. Another method considered 

is based on full-dimensional trajectory calculations of binary collisions. This method is 

found to be very accurate, predicting Lennard-Jones collision rates within ~10% of those 

obtained via tabulated (experimentally-based) Lennard-Jones parameters. Finally, a 

computationally efficient method is presented based on one-dimensional minimizations 

averaged over the colliding partners’ relative orientations. This method is shown to be 

both accurate and efficient. The good accuracy of the latter two approaches is shown to 

be a result of their explicit treatment of anisotropy. The effects of finite temperature 

vibrations and multiple conformers are quantified and are shown to be small. The choice 

of potential energy surface has a somewhat larger effect, and strategies based both on 

efficient semiempirical methods and on first-principles direct dynamics are considered. 

Overall, 75 systems are considered, including seven baths, targets as large as heptane, 

both molecules and radicals, and both hydrocarbons and oxygenates. 
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1. Introduction 

 Non-bonding intermolecular potentials play an important role in combustion 

chemistry. First and foremost (from our point of view), they govern collisional energy 

transfer from highly vibrationally excited molecules. In turn, this energy transfer largely 

controls the rates of unimolecular reactions at low pressure, both thermal and chemically-

activated––most notably the low-pressure-limit rate coefficients of thermal dissociation 

reactions. However, these same potentials also determine transport properties––the 

coefficients of diffusion, viscosity, heat conduction, and thermal diffusion––that are used 

in flame modeling.1 , 2  Although some work has appeared in these areas relatively 

recently,3 there is still a dearth of information that can be applied directly in chemical 

kinetics and combustion modeling. 

 In two recent papers,4,5 we have shown that a relatively inexpensive electronic-

structure method, MP2/aug'-cc-pVDZ, gives results for intermolecular potentials that are 

very close to those calculated from the high-level QCISD(T)/CBS method for CH4 

interacting with several small-molecule bath gases (He, Ne, H2, and CH4). Furthermore, 

we parameterized a very efficient semiempirical potential energy surface for 

hydrocarbons interacting with typical atomic and diatomic baths based on the 

QCISD(T)/CBS interaction energies. Using these potentials we calculated energy transfer 

rates using trajectories that give accurate low-pressure rate coefficients for the CH4 (+ M) 

⇄ CH3 + H (+ M) reaction, with M being any one of several typical bath gas molecules. 

Subsequent work (as yet unpublished for CH4 + H2O, CH3OH + He, and CxHy + M) has 

reinforced our conclusion that the MP2 and semiemprical methodologies can be 

workhorses for obtaining collisional energy transfer rates in highly vibrationally-excited 

molecules, and hence accurate unimolecular rate coefficients at low pressure. 

 The purpose of the present investigation is considerably less ambitious than that 

described above, but it is still important. We want to use the intermolecular potential 

energy methods discussed above to calculate accurate Lennard-Jones collision rates (or 

frequencies) with minimal computational effort. In unimolecular reaction rate theory,6,7 

one is always referring to !E  or !Ed , the average energy transferred in a collision 

or the average energy transferred in a deactivating collision. For these quantities to have 

meaning one must first define what a collision is. There is enormous flexibility in this 
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definition,8,9 but by convention it is normally defined in terms of a Lennard-Jones 

collision rate, which must be determined accurately. The origin of the use of the Lennard-

Jones collision rate lies in the theory of transport processes. It is worthwhile to review 

this point briefly. 

 First, if one has a binary mixture of hard-sphere molecules, the collision rate of a 

molecule of species i with molecules of species j is1 

 
Zij = !" ij

2n jgij  , (1) 
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(with ! i and ! j the diameters of the two spheres).  More generally, we will define ! ij  as 

the point where the intermolecular potential V (r)  intersects the r axis––this is the 

collision diameter for hard spheres.  In the same hard-sphere model the binary diffusion 

coefficient is 
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where p is the pressure. Defining zij = Zij n j  
to be a hard-sphere “collision rate 

coefficient”, the diffusion coefficient becomes 
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Thus all of the dependence of Dij  on the potential is absorbed into zij . 

 If one considers the Lennard-Jones potential, 
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where ! ij  was defined above and !ij  is the well depth [or any potential of the form 

V (r) = ! f (r /" ) ], the diffusion coefficient can be written as 

  
Dij =

3
16
(2!kB

3T 3 / µij )
1
2

p!" ij
2!(1,1)*

 
 (5) 

where  Ω (1,1)*  is a reduced collision integral that depends on the intermolecular potential.  

Equation (5) suggests that, by analogy with the hard-sphere case, we define the collision 

rate coefficient as 

  
zij = !" ij

2!(1,1)*gij   (6) 

One can view this as a general result with ! ij  
and !(1,1)*  evaluated for the particular 

potential under consideration (!(1,1)* =1  for hard spheres). Results analogous to Eq. (6) 

can also be derived using the viscosity and conductivity,1 but in these cases !(2,2)* , 

another reduced collision integral, replaces !(1,1)* . We shall not be concerned with the 

precise definition of the collision integrals here except to note that their values are readily 

obtainable in tabular form. We are most interested in diffusion coefficients and hence in 

!(1,1)* , but the Lennard-Jones potential parameters that we determine can be used to 

calculate any of the reduced collision integrals. !(1,1)* and !(2,2)*are usually very similar 

in magnitude, commonly differing by less than 10%. 

 One is tempted to think that this is all well and good, but real molecules are not 

point particles (or hard spheres). They have structure––their potential depends on more 

than just the distance between the centers of mass of the two colliding molecules. 

Interestingly, high level quantum scattering calculations on ab initio potential energy 

surfaces show that transport properties can be computed quite accurately by using only 

the “spherically-averaged,” isotropic part of the potential, i.e. by assuming point particles, 

at least for small molecules.10,11,12 Also, the decades-old practice of fitting experimental 

data to Lennard-Jones potentials suggests that this simplification may be accurate. 

 In the present article we discuss different methods of obtaining Lennard-Jones 

parameters from detailed, full-dimensional intermolecular potentials. We compare the 

results with the experimental results available, normally by comparing collision rate 

coefficients for the different sets of Lennard-Jones parameters. We primarily consider 
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cases where helium is one of the collision partners. This simplifies the electronic-

structure calculations and eliminates any effects of dipole-dipole interactions. The pure-

gas parameters can be determined from whatever combining rules one may wish to use, 

as discussed recently by Brown et al.3 

 We would be remiss if we did not mention evidence that the Lennard-Jones 

potential may be too repulsive at short distances, leading to the underprediction of some 

diffusion coefficients at high temperatures by ~20%.13  Paul and Warnatz14 suggest that 

an exponential repulsive part may be more appropriate at high temperatures. The present 

methodology could be generalized to obtain potential parameters for such a potential as 

well. However, for now the Lennard-Jones potential is still in common use, largely 

because it is the potential used in CHEMKIN.15 Brown et al.3 recommend the use of 

Lennard-Jones parameters in combustion modeling over more complicated forms, as well. 

We will limit ourselves to determining those parameters in the present article. We also 

want to note that transport properties, particularly thermal conductivity and viscosity, 

depend on some other molecular properties, most notably dipole moments and 

polarizabilities. These properties can be computed accurately using relatively low-level 

electronic structure methods. We hope to address this issue in the near future. 

 

2. Theory 

 Here we describe several methods for calculating isotropically-averaged (i.e., 

spherically-averaged) intermolecular potentials and/or Lennard-Jones collision 

parameters for a molecule or radical (A) interacting with a bath gas atom or molecule (B). 

All of the methods involve averaging the full-dimensional anisotropic intermolecular 

potential, V(R), in some way over the colliding species’ relative orientation and internal 

structures. This is simpler than evaluating the collision integrals directly using the full 

anisotropic potential. Instead, Lennard-Jones collision rate coefficients, z, are obtained 

from the calculated Lennard-Jones parameters σ and ε using Eq. (6) with6 

  !(1,1)* " [0.7+0.52log10(kBT / !)]
#1 , (7) 

where the “i,j” subscripts have been suppressed. 

 The total geometry of the interacting binary A + B system can be written as 

),,,( BA rΩ≡ RRRR , where RA labels the internal coordinates of the target species, RB 
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labels the internal coordinates of the bath gas (if any), and the remaining coordinates 

define the relative orientation of the target and bath, ΩR , and their center-of-mass 

separation, r. The full-dimensional intermolecular potential is defined relative to the 

separated unrelaxed species, i.e., 

  V(R) = E(R) – EA(RA) – EB(RB), (8) 

where E(R) is the total energy of the interacting target and bath gas evaluated at R, 

EA(RA) is the energy of the isolated target molecule or radical evaluated at RA, and 

EB(RB) is the energy of the isolated bath gas atom or molecule evaluated at RB (which for 

atomic baths is zero). 

 We consider two methods for calculating effective isotropic potentials. In the 

simplest scheme, the internal structures of the target and bath are set to their experimental 

or calculated equilibrium geometries, A
eqR  and B

eqR , and V(R) is averaged over ΩR  at 

fixed r. The isotropically-averaged potential is then 

  V (r) = V (Req
A

n=1,N
! ,Req

B ,R (n)
" ,r) / N , (9) 

where n labels the N uniformly sampled orientations for each r. At finite temperatures, 

the target and bath are not confined to their equilibrium structures.16 Equation (9) can be 

modified to include this effect by sampling the internal configurations of the A and B 

from thermal distributions as we sample over relative orientations, i.e., 

  V (r) = V (R (n)
A

n=1,N
! ,R (n)

B ,R (n)
" ,r) / N . (10) 

Equation (9) may be considered the low temperature limit of Eq. (10). Generally, Eq. (10) 

will predict longer-ranged interactions due to the effect of anharmonic vibrations. Even at 

elevated temperatures, however, one may expect Eqs. (9) and (10) to predict very similar 

effective isotropic potentials for small molecules and for larger molecules that do not 

feature large amplitude motions. Only for systems with multiple low-lying conformers 

with different shapes (long chain species with conformers related via torsions, for 

example) would one expect the effective anisotropic potential to depend non-negligibly 

on temperature; for such systems Eq. (10) may differ from Eq. (9). 

 The desired Lennard-Jones parameters can be determined straightforwardly from 

the isotropically-averaged potentials, with 
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  Vrmin−=ε  (11a) 

  V (! ) = 0 , (11b) 

where the second equation sets σ as the inner turning point of V evaluated at its 

asymptotic energy. Equation (11) requires locating two critical points on V : its minimum 

and its inner turning point. It may be more convenient again to set  

  Vrmin−=ε  (12a) 

but then to use the associated value of r, rmin, to approximate 

  ! = 2!1/6 rmin . (12b) 

If the calculated isotropic potentials defined by Eqs. (9) and (10) were in fact Lennard-

Jones potentials, then Eqs. (11) and (12) would be entirely equivalent. The difference in 

the predicted values of σ using Eqs. (11) and (12) is therefore one measure of the 

deviation of V  from the Lennard-Jones form. 

 In the applications reported below, Eqs. (9) and (10) were evaluated for several 

normal alkane + He systems with N = 2000–10000 for each r. For Eq. (10), A
)(nR  was 

sampled from thermal distributions of geometries determined via separate molecular 

dynamics calculations subject to an Andersen thermostat.17 In addition to reporting V , 

we also report the minimum and maximum value of V sampled for each r. These extrema 

provide a measure of the anisotropy of V. 

 Next we consider using classical trajectories to calculate Lennard-Jones 

parameters directly,18 i.e., not in reference to an isotropically-averaged intermolecular 

potential. In this approach, a small ensemble of target–bath gas collisions is prepared 

using initial conditions appropriate for collisional energy transfer calculations,4,5 subject 

to the additional constraint of zero impact parameter. Along each trajectory n, the 

instantaneous value of V is monitored, and the most negative value of V encountered, Vn, 

and its associated center-of-mass distance, rn, are recorded. The trajectory-based 

Lennard-Jones parameters are then defined 

  ∑
=

−=
Nn
n NV

,1
/ε . (13a) 

  ! = 2!1/6 rn / N
n=1,N
" . (13b) 
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 This approach for calculating σ and ε differs in several ways from the use of Eqs. 

(9) and (10). First, the target and bath are vibrating during the full-dimensional trajectory 

collisions, and these internal motions may, in general, react to the presence of the other 

species during the collision; i.e., the trajectory interactions are “softer” and include 

dynamical effects due to the collision that are not available to the static sampling and 

averaging approaches described by Eqs. (9) and (10). Second, the trajectory-based 

Lennard-Jones parameters are derived directly from the full-dimensional (anisotropic) 

potential, whereas in Eqs. (9) and (10) the anisotropy is averaged over before the 

Lennard-Jones parameters are determined. If the intermolecular potential were really 

isotropic and if the dynamical effect of internal vibrations were small, the two approaches 

would give similar results. The trajectory-based Lennard-Jones parameters therefore 

include anisotropic effects that are not included in Eqs. (9) and (10) and may be 

considered “effective” Lennard-Jones parameters that include this anisotropy. Finally, the 

trajectories are subject to total energy constraints, and so the trajectory method never 

samples highly repulsive interactions, whereas the isotropically averaged potentials in 

Eqs. (9) and (10) will generally include contributions from geometries high on the 

repulsive wall, even for r close to the minimum of the effective isotropic potential. 

 Full-dimensional molecular dynamics may be too expensive for practical 

evaluations of Lennard-Jones parameters, and a somewhat simpler approach is 

considered next. However, when one requires Lennard-Jones parameters to be used 

alongside molecular dynamics studies of energy transfer, the present ensembles represent 

a small fraction of the total cost of such a calculation. 

 We also note that one could use classical trajectories to calculate transport 

properties.19 ,20 An advantage of such an approach would be that one could avoid 

assuming the isotropic Lennard-Jones form (or some other simplified form) for the 

intermolecular potential. The goal of the present work is to validate convenient schemes 

for obtaining transport and collisional parameters for use in building detailed models of 

combustion and for pressure-dependent reaction rate coefficients, where, as discussed 

above, it is both conventional and expedient to assume Lennard-Jones interactions. We 

therefore do not consider using full-dimensional trajectories to calculate transport 

properties directly in this work. 
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 Finally, we present a method that includes the effect of local anisotropy, as in the 

trajectory-based method, but that does not require full-dimensional trajectories. This 

method incorporates desirable aspects of both of the approaches described above. In the 

simplest implementation, R!  is sampled uniformly and ),,,( )(
B
eq

A
eq rV n

ΩRRR  is minimized 

with respect to r, and 

  d
dr
V (Req

A ,Req
B ,R (n)

! ,r) = 0 , (14) 

defines the values of Vn and rn. Lennard-Jones parameters are then calculated via Eq. 

(13). Alternatively, one can perform an additional optimization to locate the inner turning 

point, σn, for each Ω
)(nR  and calculate 

  ∑
=

−=
Nn
n NV

,1
/ε . (15a) 

  ! = ! n / N
n=1,N
! . (15b) 

Finally, we note that one could sample over the internal geometries of the target and bath 

gas along with the orientations, where Vn and rn are then obtained by minimizing 

),,,( )(
B
)(

A
)( rV nnn

ΩRRR  with respect to r, 

  d
dr
V (R (n)

A ,R (n)
B ,R (n)

! ,r) = 0 . (16) 

Such an approach includes temperature and multiconformational effects, as discussed 

above for Eq. (10). 

 As with the trajectory approach, the one-dimensional-minimization approach 

results in effective Lennard-Jones parameters that include anisotropy. The present 

method differs from the trajectory method in that it is much less computationally 

demanding, with the tradeoff that dynamical collision effects are not included. 

 The results of any of the methods described above will depend sensitively on the 

potential energy surface used. Several potential energy surfaces have been considered 

here, including both direct dynamics and more efficient approximate representations. For 

hydrocarbons targets, we make use of our recently developed analytic intermolecular 

potential energy surfaces,5 which have been validated against high-level QCISD(T)/CBS 

energy calculations as well as in dynamical calculations of energy transfer. These 
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potential energy surfaces (labeled “exp/6”) employ a tight binding model21 to describe the 

internal potential of the target along with parameterized “separable pairwise” 

Buckingham (i.e., exp/6) interactions for the target–bath atomic interactions. 

Buckingham parameters for several baths are taken from Refs. 5 and 22. For targets 

containing oxygen atoms and to further test the exp/6 parameterization for hydrocarbons, 

we also consider high-level direct MP2/CBS and QCISD(T)/CBS calculations with 

counterpoise corrections and CBS extrapolations based on aug-cc-pVDZ and aug-cc-

pVTZ basis sets. (One expects the more widely used and slightly more computationally 

expensive CCSD(T) method to perform similarly to the QCISD(T) method.) Finally, we 

test the accuracy of less expensive direct dynamics methods, including (briefly) DFT and 

MP2 with small and medium-sized basis sets and our previously employed4,5 MP2/aug'-

cc-pVDZ potential. 

 The calculated binary Lennard-Jones parameters and collision rates are compared 

with tabulated values collected from a variety of sources. The usual combining rules are 

used, with the arithmetic mean used for σ and the geometric mean used for ε. Pure gas 

values for the bath gases are taken principally from the tables distributed with 

CHEMKIN,15 with Ne and Kr from Ref. 23: σ = 2.576, 2.749, 3.330, 3.684, 2.920, 3.681, 

3.458 Å and ε = 7.098,  24.74, 94.87, 121.4, 26.41, 67.89, 74.64 cm–1 for He, Ne, Ar, Kr, 

H2, N2, and O2, respectively. Parameters for several normal alkanes are taken from Tee et 

al.24 and are based on experimental viscosities and second virial coefficients. Hexane is 

not included in this tabulation, so its values are linearly interpolated from pentane and 

heptane. Parameters for the other target molecules and radicals are taken from 

CHEMKIN’s distributed tables.15 

 

3. Results and discussion 

3.1. Isotropically averaged potentials 

 The exp/6 potential was used to evaluate the isotropically averaged potentials 

described by Eqs. (9) and (10) with N = 10000 for four normal alkanes + He, with the 

resulting Lennard-Jones parameters summarized in Table 1. The isotropically-averaged 

potentials defined by Eq. (9) are plotted in Fig. 1 for methane, ethane, and butane + He, 

where it can be seen that the potentials are well described by the Lennard-Jones form. 
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The calculated values of σ obtained via Eqs. (11) and (12) differ negligibly for CH4 and 

only by 4% for hexane, which supports the use of this functional form to describe the 

isotropically-averaged intermolecular potential, at least for the region of the potential 

near the well and inner turning point. One can notice some minor deviations from the 

Lennard-Jones form at longer and shorter distances, particularly for the larger species. 

 Using Eq. (9), the calculated values of σ2 (the square of σ is proportional to the 

collision rate, as shown in Eq. (6)) are larger than the tabulated ones by only 17% for 

methane but by more than 100% for hexane, while the calculated values of ε are smaller 

by 30–80%. Because the deviations from the tabulated values for these two parameters 

are in different directions, these effects cancel somewhat when calculating the collision 

rates. For example, for CH4 + He σ2 and ε differ from the tabulated values by +17% and 

–30%, while the collision rates differ by only 10%.  

 Agreement with the tabulated collision rates is worse for the larger systems, 

principally due to significant differences between the calculated and tabulated values of 

σ. Furthermore, while the tabulated well depths ε increase almost linearly with size, the 

calculated ones are similar for methane, ethane, and butane, and the calculated value of ε 

for hexane is smaller than for the smaller species. These differences can be explained by 

considering the anisotropy in the intermolecular potential, as indicated by minimum and 

maximum sampled values of V shown in Fig. 1. Even for the smallest system considered, 

CH4 + He (Fig. 1(a)), there is significant anisotropy in the potential for r < 4 Å. At the 

inner turning point on V  (r = 3.38 Å) for example, the minimum and maximum energies 

on the anisotropic potential differ by 100 cm–1, which is 4x as large as ε. This suggests 

that, even for a small and roughly spherical system like CH4 + He, one may expect 

significant anisotropy and that predicted Lennard-Jones parameters will be sensitive to 

the treatment of this anisotropy. Similarly, we note that the locations of the inner turning 

points along the most and least attractive approaches for CH4 + He differ by almost 1 Å. 

 As may be expected, there is even more anisotropy for the larger species. For 

C2H6 + He, one can identify two groups of approaches in the minimum-energy curve in 

Fig. 1(b): one with a minimum near r = 4.2 Å that includes approaches to the –CH3 ends 

of ethane with interactions similar in magnitude to the CH4 + He interactions, and one 

with a minimum near r = 3.5 Å that includes shorter-ranged and more attractive 
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interactions as He approaches perpendicularly to the C–C axis of ethane. These two types 

of approaches lead to even greater anisotropy for ethane than for methane. For butane, 

there are more than two qualitatively different types of approaches, but we do not attempt 

to enumerate them. Instead, we note that the variation in the locations of the inner turning 

points for the most and least attractive approaches for butane + He is 2.3 Å! 

 This significant anisotropy explains the inaccuracy of Eq. (9) for large systems. 

For example, when sampling over the butane + He interactions at the tabulated value of σ 

= 3.8 Å, the averaged potential includes geometries very high up on the repulsive wall––

as high as 35,000 cm–1. For large enough molecules, these energies can be made 

arbitrarily large, because the bath gas atom may be put arbitrarily close to an atom on the 

target molecule. The isotropic potentials obtained via Eq. (9) are therefore contaminated 

by the resulting “infinities.” As a practical matter, the exp/6 potentials are not expected to 

be accurate so high up on the repulsive wall. Even if the potentials were accurate, it is 

formally undesirable that this region of the potential should contribute so significantly in 

determining the transport properties. Most importantly, perhaps, the use of Eq. (9), while 

accurate for small systems, significantly overpredicts the tabulated collision rates for 

butane and hexane. One may conclude that these overpredictions are due to inaccurate 

averaging over the repulsive wall, which leads to erroneously large values of σ. 

 We note another complication that arises for the normal alkanes larger than 

propane and more generally for any system with multiple conformers. Butane + He 

parameters were predicted via Eq. (9) for two equilibrium structures: one corresponding 

to the anti conformer of butane and one corresponding to the gauche conformer of 

butane. As seen in Fig. 1(c), the gauche conformer results in a shorter-ranged 

isotropically-averaged potential relative to that of the anti conformer and leads to 

collision rates that are ~10% smaller (as shown in Table 1). One may anticipate this 

effect to be more significant for larger systems. This ambiguity can be resolved by using 

the temperature-dependent method defined by Eq. (10). This method properly weights the 

two conformers according to their relative thermal populations. The drawback of this 

approach is that the predicted Lennard-Jones parameters are temperature dependent. 

Nonetheless, Eq. (10) may be useful for some systems. Even for systems without 

torsions, the effect of finite-temperature vibrations can be seen in Table 1. For methane 
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and ethane + He, the use of Eq. (10) leads to collision rates that are very similar at 300 K 

and that are only a few percent larger at 3000 K. We may conclude that––aside from 

multiple conformer effects––the effect of finite-temperature vibrations is small, even at 

high temperatures. 

 

3.2. Effective parameters with anisotropy from full-dimensional trajectories 

 Ensembles of N = 2000 classical trajectories and the exp/6 potential were used as 

described in Sec. II to calculate Lennard-Jones parameters for a variety of normal 

hydrocarbons and for several atomic and diatomic baths. The results are compared with 

tabulated values in Table 2. Agreement is excellent when He is the bath gas, with the 

calculated Lennard-Jones collision rates differing from the tabulated ones typically by 

less than 3%. For the other baths, the predicted collision rates again agree well with the 

tabulated values, but the differences can be as large as 10%. The good agreement over 

this wide variety of baths and for targets as large as heptane is encouraging.  

 For He, the individual Lennard-Jones parameters are very similar to the tabulated 

values, with σ typically predicted within ~0.1 Å and ε predicted within a few cm–1. For 

the other baths, the differences are somewhat larger, and the predicted collision rates 

benefit from the cancellation discussed above. Bastien et al.25 have stressed that the 

experimental measurements cannot fix the two parameters individually and have instead 

identified a two-dimensional “trough” of suitable experimentally-inferred pairs of values 

for σ and ε. This trough can be defined through the collision rate, as discussed in the 

Introduction. The present differences in the individual parameters therefore do not 

necessarily indicate poor performance of the method. Again, the overall agreement in the 

predicted collision rates is very good. 

 Transport parameters are most often tabulated for use in kinetic modeling as pure 

gas (self-interaction) Lennard-Jones parameters, which are then converted to binary 

Lennard-Jones parameters via simple combining rules.3,25 To make a practically useful 

list from the present results, the binary Lennard-Jones parameters calculated here would 

need first to be converted to a list of self-interaction parameters. To do this, one could 

assume some set of pure gas parameters for the bath gas and then calculate the pure gas 

parameters for the target species by inverting the combining rule, as noted in the 
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Introduction. The results in Table 2 can be used to test the sensitivity of the results of this 

procedure on the choice of the bath gas. Using tabulated parameters for the seven bath 

gases, the inferred pure gas values of σ for CH4 vary from 3.17−3.83 Å and the inferred 

pure gas values of ε vary from 82−323 cm−
1. Notably, the largest value for σ and the 

smallest value for ε are obtained for He, and H2 gives the smallest value for σ and the 

largest value for ε. Similar sensitivities are obtained for the larger alkanes. One cannot 

assign a preferred bath gas by comparison with tabulated values, as the tabulated values 

themselves require assuming a combining rule. Instead we note that N2 is the most 

important collider in many applications, and its values are close to the mean of the ranges 

identified above. Furthermore, while the maximum deviation in σ is large for the 

different baths, the root-mean-squared deviation in σ is only 7% (15% in the collision 

rate). The relative deviation is larger for ε, but the collision rate is less sensitive to this 

parameter. In general, we recommend the use of N2 as a collision partner when 

generating pure gas collision rates. Alternatively, one could directly calculate pure gas 

collision parameters. Often, however, these interaction potentials are not well known, and 

the appropriateness of the combining rules used in subsequent kinetic modeling would 

nonetheless remain in question. 

 The systems in Table 2 were selected to keep things manageable, but the 

trajectory method and the exp/6 potential may be readily applied to unsaturated 

hydrocarbon species and hydrocarbon radicals as well. This is demonstrated for ten C3Hx 

+ He systems in Table 3. There are clear trends with respect to the number of hydrogen 

atoms. The collision rates for the molecular species increase systematically with 

increasing saturation—by 7% for each pair of hydrogen atoms added. The two C3H4 

isomers, allene and propyne, have similar collision rates. In practice and due to a general 

lack of information about radicals, radicals species are often assigned the collision 

parameters of related hydrogenated or dehydrogenated molecules. The present results 

suggest that it is a good approximation to adopt parameters of “nearby” hydrogenated 

molecules, although the radical species’ collision rates are sometimes smaller by a few 

percent. 
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3.3. Effective parameters with anisotropy from one-dimensional minimizations 

 The exp/6 potential was used to perform one-dimensional minimizations, 

averaged over orientation, as described by Eqs. (14) and (16) with N = 2000 for four 

normal alkanes + He. The results are shown in Table 4. The predicted collision rates are 

within ~15% of the tabulated ones, and, unlike the isotropically-averaged potential 

methods, the accuracy of the one-dimensional minimization approach remains good for 

the larger systems. The one-dimensional minimization methods tend to overpredict the 

tabulated rates, and this overprediction does increase somewhat with size.  

 Figure 2 shows representative one-dimension cuts for three normal alkanes + He. 

The local minimum for each cut is indicated, and these values are averaged (for larger 

ensemble sizes than shown in Fig. 2) to obtain the results in Table 4. Figure 2 may be 

compared with Fig. 1. In Fig. 1, the potential is spherically averaged first, and then the 

Lennard-Jones parameters are extracted. In Fig. 2, Lennard-Jones parameters for each 

approach are determined first, and these are then averaged. Clearly, the latter approach 

incorporates anisotropic information not available to the former approach. The poor 

performance of the approach in Fig. 1 further demonstrates that local anisotropic 

information is required for quantitative predictions. 

 Also shown in Fig. 2 are representative results from the trajectory method 

discussed above. Note that while the trajectory approach results in values for Vn and rn 

that are similar to those obtained via the one-dimensional minimizations, they are 

systematically shorter-ranged and more attractive. These differences may be attributed to 

dynamical effects not included in the one-dimensional minimizations. Specifically, the 

colliding partners experience “softer” interactions than the rigid fragment approaches due 

to vibrational deformations from the impact of the collisions. 

 There is relatively little sensitivity of the one-dimensinal minimization results on 

the temperature of the target, with the application of Eqs. (14) and (16) predicting rates 

differing by only a few percent. This is in contrast to the results shown in Table 1 for the 

isotropic potential methods. We can explain this result by noting that the one-dimensional 

minimizations depend only on the local (i.e., anisotropoic) potential, whereas the 

isotropic averages depend on the global potential for fixed r. The choice of conformer of 
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the target molecule therefore has more of an effect on the predictions of the isotropically-

averaged methods in Table 1 than the one-dimensional minimization methods in Table 4. 

 The results in Table 4 are similar in overall accuracy to those predicted by the 

trajectory method in Tables 2 and 3. There are systematic differences, however. The 

trajectory method tends to underpredict the collision rates, whereas the one-dimensional 

minimization method overpredicts them. If we compare the finite temperature results in 

Table 4 with the trajectory results in Table 2, we can attribute the differences in the 

predictions to dynamical effects in the trajectory calculations. These differences vary 

from ~5% for methane to ~15% for hexane. 

 The one-dimensional minimizations are orders of magnitude less demanding 

computationally than the trajectory method and are simple to implement, particularly if 

Eq. (14) is used. We therefore recommend this approach as a practical method for 

obtaining accurate Lennard-Jones collision parameters.  

 

3.4. Sensitivity to the potential energy surface 

 We also consider the sensitivity of the predicted results to the choice of potential 

energy surface. For these tests, we use the one-dimensional minimization method 

exclusively, with finite temperature effects neglected, i.e., we use Eq. (14). Results for 

several small systems + He are summarized in Table 5. Aside from relatively poor results 

for H + He and CH + He, all of the potentials considered predict collision rates in fairly 

good agreement with the tabulated values, typically within 15%. The larger differences 

for the lighter species and for H + He in particular may be due to the representation of the 

repulsive wall by the Lennard-Jones form.13,14 The present calculated values for σ and ε 

for H + He agree with those based on the high level calculated potential energy surface of 

Middha et al.13 

 The QCISD(T)/CBS method is the highest-level method considered, and it is 

encouraging that it generally agrees with the somewhat less expensive MP2/CBS method. 

The much less expensive MP2/aug'-cc-pVDZ method often agrees with the higher-level 

methods, with differences as large as 10%. The exp/6 potential was originally 

parameterized5,22 against QCISD(T)/CBS calculations for CH4 + He but neglects 

nonpairwise interactions. Furthermore the exp/6 potential uses the CH4 + He-based atom-
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atom interaction parameters for all hydrocarbon interactions. We have not developed 

similarly general exp/6 parameters for oxygenates. 

 We emphasize that all of the potentials considered here may be expected to be 

fairly accurate, either as first-principles approaches (MP2/CBS and QCISD(T)/CBS) or 

because they have been previously validated against such high-level calculations (exp/6 

and MP2/aug'-cc-pVDZ). To demonstrate the errors associated with choosing a bad 

potential, we obtained results using the B3LYP and M06-2X density functional theory 

methods. Both of these functionals have been successfully employed in a wide variety of 

contexts throughout chemistry, but neither is explicitly designed to treat dispersion 

interactions. The resulting Lennard-Jones parameters can by unphysical when these 

methods are used. For example, the M06-2X/cc-pVDZ method predicts ε = 161 cm–1 and 

σ = 2.30 Å for C + He, which are very different from the tabulated values of 18.8 cm–1 

and 2.94 Å and the high level (QCISD(T)/CBS) calculated values of 19.5 cm–1 and 2.91 

Å. The B3LYP/cc-pVDZ method also predicts innacurate values of ε = 80.2 cm–1 and σ = 

2.33 Å for C + He. Density functional theories designed specifically for dispersion 

interaction26 were not tested here. Instead we note the general difficulty in predicting 

weak dispersion reactions and the good accuracy of the counterpoise corrected MP2 and 

QCISD(T)/CBS methods. 

 In general, the calculation of accurate intermolecular potentials requires the use of 

large augmented (diffuse) basis sets, basis set extrapolations, counterpoise corrections, 

and some post-Hartree–Fock approach, preferably with perturbative triples. 27  Less 

expensive potentials may accidentally perform well in predicting collision rates, however, 

due to the cancellation discussed above. When a less predictive method, say, overpredicts 

the strength of the interactions, it is almost certain also to be shorter-ranged, such that the 

two errors cancel. 

 Finally, results for several systems relevant to combustion are reported in Table 6 

calculated using the MP2/CBS potential and Eq. (14). General agreement with tabulated 

collision rates is good, although there are notable exceptions. As noted above, the present 

approach overpredicts the H + He collision rate by 50%, which may be due to the 

treatment of the repulsive wall. The tabulated15 pure gas value of σ for HCCO is 2.5 Å, 

which is much smaller than tabulated values of σ for related species. The predicted value 
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of σ for HCCO + He is 3.6 Å and is similar to other HxC2O species. This choice in the 

tabulated value of σ for HCCO leads to values of zcalc/ztab close to 2 in Table 6 for HCCO 

+ He. Otherwise, the predicted and tabulated collision rates typically differ by less than 

20%.  

 

4. Conclusions 

 Several methods for calculating binary Lennard-Jones collision parameters from 

full-dimensional intermolecular potentials have been considered. While orientationally 

averaging over real potentials does result in isotropically-averaged potentials that are well 

described by the Lennard-Jones form, collision rates based on these potentials are not 

accurate for systems larger than a few atoms. We demonstrated that, even for small 

molecules, real potentials feature significant anisotropy in the region of the potential 

relevant to transport. When orientationally averaging over real potentials, this anisotropy 

leads to unphysical averaging over repulsive interactions and significant errors in 

predicted transport parameters. 

 Two methods for calculating effective Lennard-Jones parameters directly from 

full-dimensional anisotropic intermoleculars potential were considered. The first involves 

small ensembles of full-dimensional trajectories and was shown to predict Lennard-Jones 

collision rates in excellent (10%) agreement with tabulated values for systems as large as 

heptane and for several baths. The predicted values of σ are typically smaller than the 

tabulated values, and the predicted values of ε are typically larger than the tabulated 

values. These two errors cancel when evaluating collision rates and therefore may not 

indicate poor performance of the method, as emphasized by Brown and co-workers.3,25 

 The second method for calculating effective Lennard-Jones parameters is much 

simpler and more computationally efficient than the trajectory approach and involves 

one-dimensional minimizations averaged over relative orientations of the two species. 

Again, agreement between the predicted and tabulated collision rates is excellent (10%). 

The trajectory method tends to underpredict the collision rates, while the one-dimensional 

minimization method tends to overpredict the collision rates. These systematic 

differences may be attributed to dynamical effects resulting in “softer” interactions in the 

trajectory approach. 
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 In principle, one can include multiconformer effects and, more generally, the 

effect of temperature-dependent vibrations for the target and bath gas species for any of 

these methods tested here. The present tests confirm that such effects are small and may 

typically be neglected. 

 Both radical and molecular species were considered. The present results confirm 

that Lennard-Jones parameters for radical species may be accurately approximated as 

those of associated hydrogenated (+H) molecules. One can, however, identify a 

systematic increase in the predicted collision rates of molecular species with increasing 

saturation (+2H). 

 The consistency of simple combining rules (the arithmetic mean for σ and the 

geometric mean for ε) with the present results was tested for several normal alkanes and 

several baths. Pure gas Lennard-Jones parameters for the normal alkanes obtained from 

binary parameters depend fairly sensitively on the choice of bath gas. Notably, the use of 

He as the bath gas, systematically results in the largest pure gas normal alkane values for 

σ and the smallest values of ε. The use of N2, on the other hand, results in pure gas 

normal alkane values of σ and ε close to their average values. Although He was primarily 

considered here, it may be more useful to use N2 as the collision partner when compiling 

lists of transport parameters for use in modeling studies. 

 Finally, the sensitivity of the predicted parameters on the choice of the level of 

theory used to describe the potential energy surface was considered. The previously fitted 

semiempirical exp/6 intermolecular potential is found to be accurate, but its applicability 

is limited to hydrocarbons interacting with typical atomic and diatomic baths. For 

oxygenated species, two high level ab initio methods were considered: the counterpoise 

corrected MP2 and QCISD(T) methods with CBS basis set extrapolations. Typically the 

two methods were found to result in similar predictions. More approximate ab initio 

methods were also considered. While the previously employed MP2/aug'-cc-pVDZ 

method performed fairly well, other inexpensive ab intio methods including density 

functional theory were shown to lead to significant errors. Notably, these results again 

demonstrated the significant cancellation in the collision rate arising from opposite-sign 

errors in the predicted values of σ and ε. 



 20 

The cumulative effect of the present predicted (typically) 0–20% changes to 

collision rates in Table 6 on various properties of combustion modeling is not known. 

The present approach provides not only a convenient means for obtaining transport 

properties for species not previously tabulated but also provides a means for obtaining a 

systematic set of transport properties. Such a systematic set may aid in future sensitivity 

analyses of transport properties in combustion modeling. 
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Table 1. Calculated Lennard-Jones parameters based on effective isotropic potentials 

compared with tabulated values and relative collision rates for four normal alkanes + Hea 

  Calculatedb Tabulatedc zcalc/ztab   

Target Method σ, Å ε, cm–1 σ, Å ε, cm–1 300 K 1500 K 3000 K 

CH4 Eq. (9) 3.38 19.8 3.13 28.7 1.09 1.11 1.11 

 Eq. (10) 3.39–3.43 19.6–18.7 3.13 28.7 1.09 1.12 1.14 

C2H6 Eq. (9) 3.77 24.2 3.40 36.8 1.13 1.16 1.16 

 Eq. (10) 3.79–3.85 23.8–22.3 3.40 36.8 1.14 1.17 1.20 

C4H10 Eq. (9)d 4.73 19.0 3.79 44.3 1.32 1.37 1.39 

 Eq. (9)e 4.46 24.4 3.79 44.3 1.23 1.26 1.28 

 Eq. (10) 4.50–4.67 23.3–20.1 3.79 44.3 1.24 1.31 1.36 

C6H14 Eq. (9)d 5.93 11.3 4.04 51.9 1.61 1.73 1.76 

 Eq. (10) 5.88–5.74 11.7–12.2 4.04 51.9 1.59 1.66 1.67 
aFor the exp/6 intermolecular potential 
bVia Eq. (11) 
cFrom Ref. 24 
dAnti conformer 
eGauche conformer 
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Table 2. Calculated Lennard-Jones parameters based on full-dimensional trajectories 
compared with tabulated values and relative collision rates for several normal 
hydrocarbons in several bathsa 
  Calculated Tabulatedb zcalc/ztab   
Target Bath σ, Å ε, cm–1 σ, Å ε, cm–1 300 K 1500 K 3000 K 
CH4 He 3.20 24.1 3.13 28.7 1.01 1.02 1.02 
 Ne 3.25 53.7 3.21 53.6 1.02 1.02 1.02 
 Ar 3.47 128 3.50 105 1.04 1.02 1.01 
 Kr 3.51 163 3.68 119 1.00 0.97 0.96 
 H2 3.05 92.4 3.30 55.3 0.96 0.93 0.92 
 N2 3.59 122 3.68 88.7 1.04 1.01 1.00 
 O2 3.35 126 3.57 93.0 0.95 0.93 0.93 
C2H6 He 3.36 36.3 3.40 36.8 0.97 0.97 0.97 
 Ar 3.62 168 3.78 134 0.98 0.96 0.96 
 N2 3.78 148 3.95 114 0.98 0.96 0.95 
C3H8 He 3.55 43.4 3.78 36.3 0.92 0.91 0.90 
 Ar 3.80 194 4.16 133 0.94 0.90 0.90 
 N2 3.96 164 4.33 112 0.93 0.90 0.89 
C4H10 He 3.71 48.3 3.79 44.3 0.98 0.97 0.97 
 Ne 3.76 80.6 3.88 82.8 0.93 0.93 0.94 
 Ar 3.95 214 4.17 162 0.98 0.95 0.94 
 Kr 3.94 292 4.34 183 0.96 0.91 0.90 
 H2 3.67 147 3.96 85.6 0.99 0.95 0.94 
 N2 4.12 178 4.34 137 0.97 0.95 0.94 
 O2 3.86 240 4.23 144 0.97 0.92 0.91 
C5H12 He 3.84 52.6 3.93 48.3 0.97 0.97 0.97 
 Ar 4.04 235 4.31 177 0.96 0.93 0.93 
 N2 4.23 192 4.48 150 0.96 0.94 0.93 
C6H14 He 3.96 56.4 4.04 51.9 0.98 0.97 0.97 
 Ne 3.96 92.2 4.12 97.0 0.91 0.91 0.92 
 Ar 4.16 251 4.41 190 0.97 0.94 0.94 
 Kr 4.15 344 4.59 215 0.96 0.91 0.90 
 H2 3.90 166 4.21 100 0.99 0.95 0.93 
 N2 4.37 201 4.59 161 0.97 0.95 0.94 
 O2 4.10 288 4.48 169 1.00 0.94 0.92 
C7H16 He 4.06 58.9 4.15 55.3 0.97 0.97 0.97 
 Ar 4.24 265 4.52 202 0.96 0.93 0.93 
 N2 4.42 213 4.70 171 0.95 0.92 0.92 
aFor the exp/6 intermolecular potential 
bFrom Refs. 15, 23, and 24 
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Table 3. Calculated Lennard-Jones parameters based on full-dimensional trajectories for 

C3Hx + He compared with tabulated values for propane + Hea 

  zcalc/ztab   

Target σ, Å ε, cm–1 300 K 1500 K 3000 K 

HCCC 3.20 42.1 0.74 0.73 0.73 

HCCCHb 3.21 44.0 0.75 0.74 0.74 

H2CCCH 3.24 45.1 0.77 0.76 0.76 

H2CCCH2 3.28 45.7 0.79 0.78 0.78 

H3CCCH 3.31 44.6 0.80 0.79 0.79 

H2CCHCH2 3.35 44.7 0.82 0.81 0.81 

H3CCHCH2 3.43 44.2 0.86 0.85 0.85 

H3CCH2CH2 3.56 41.8 0.91 0.90 0.90 

H3CCHCH3 3.55 41.5 0.91 0.90 0.90 

H3CCH2CH3 3.55 43.5 0.92 0.91 0.90 
aFor the exp/6 intermolecular potential 
bHydrogenated “parent” molecules in bold may be compared with the associated 

radical(s) listed above them. 
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Table 4. Calculated Lennard-Jones parameters based on one-dimensional minimizations 

compared with tabulated values and relative collision rates for four normal alkanes + Hea 

  Calculatedb Tabulatedc zcalc/ztab   

Target Method σ, Å ε, cm–1 σ, Å ε, cm–1 300 K 1500 K 3000 K 

CH4 Eq. (14) 3.32 21.5 3.13 28.7 1.07 1.08 1.09 

 Eq. (16) 3.33–3.35 21.4–21.0 3.13 28.7 1.07 1.09 1.10 

C2H6 Eq. (14) 3.64 28.9 3.40 36.8 1.08 1.10 1.10 

 Eq. (16) 3.63–3.66 28.8–28.3 3.40 36.8 1.08 1.11 1.12 

C4H10 Eq. (14)d 4.08 37.3 3.79 44.3 1.12 1.13 1.13 

 Eq. (14)e 4.07 37.1 3.79 44.3 1.11 1.12 1.13 

 Eq. (16) 4.06–4.09 37.9–36.7 3.79 44.3 1.11 1.12 1.13 

C6H14 Eq. (14)d 4.32 45.1 4.04 51.9 1.11 1.12 1.12 

 Eq. (16) 4.35–4.43 43.9–42.5 4.04 51.9 1.12 1.14 1.17 
aFor the exp/6 intermolecular potential 
bVia Eq. (13) 
cFrom Refs. 15 and 24 
dAnti conformer 
eGauche conformer 
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Table 5. Calculated Lennard-Jones parameters compared with tabulated values and 

relative collision rates for several intermolecular potentials for small targets + Hea 

  Calculated Tabulatedb zcalc/ztab   
Target PES σ, Å ε, cm–1 σ, Å ε, cm–1 300 K 1500 K 3000 K 
H exp/6 2.92 3.67 2.31 26.7 1.15 1.23 1.26 
 MP2/A'DZ 3.37 2.89 2.31 26.7 1.48 1.60 1.63 
 MP2/CBS 3.35 2.32 2.31 26.7 1.42 1.54 1.58 
 QCISD(T)/CBS 3.17 4.49 2.31 26.7 1.39 1.48 1.51 
H2 exp/6 3.01 6.58 2.75 13.7 1.06 1.09 1.10 
 MP2/A'DZ 3.14 5.81 2.75 13.7 1.13 1.16 1.18 
 MP2/CBS 3.07 6.64 2.75 13.7 1.11 1.14 1.15 
 QCISD(T)/CBS 2.98 9.55 2.75 13.7 1.11 1.12 1.13 
C exp/6 3.08 16.0 2.94 18.8 1.07 1.08 1.08 
 MP2/A'DZ 2.58 45.5 2.94 18.8 0.92 0.88 0.87 
 MP2/CBS 2.57 39.3 2.94 18.8 0.88 0.85 0.84 
 QCISD(T)/CBS 2.91 19.5 2.94 18.8 0.99 0.99 0.98 
CH exp/6 3.15 17.7 2.67 19.9 1.37 1.38 1.38 
 MP2/A'DZ 3.10 26.9 2.67 19.9 1.44 1.42 1.41 
 MP2/CBS 3.09 21.1 2.67 19.9 1.36 1.36 1.36 
 QCISD(T)/CBS 3.02 26.9 2.67 19.9 1.36 1.34 1.34 
3CH2 exp/6 3.21 19.2 3.19 26.6 0.95 0.97 0.97 
 MP2/A'DZ 3.49 13.6 3.19 26.6 1.06 1.09 1.10 
 MP2/CBS 3.47 9.72 3.19 26.6 0.99 1.03 1.04 
 QCISD(T)/CBS 3.35 14.4 3.19 26.6 0.99 1.01 1.02 
1CH2 exp/6 3.21 19.2 3.19 26.6 0.95 0.97 0.97 
 MP2/A'DZ 3.40 20.2 3.19 26.6 1.08 1.09 1.10 
 MP2/CBS 3.36 16.1 3.19 26.6 1.01 1.03 1.04 
 QCISD(T)/CBS 3.29 18.9 3.19 26.6 1.00 1.02 1.02 
O exp/6 N/A       
 MP2/A'DZ 2.87 21.5 2.66 19.9 1.14 1.14 1.14 
 MP2/CBS 2.79 12.7 2.66 19.9 1.01 1.03 1.04 
 QCISD(T)/CBS 2.73 18.8 2.66 19.9 1.04 1.04 1.04 
OH exp/6 N/A       
 MP2/A'DZ 2.89 27.3 2.66 19.9 1.25 1.23 1.23 
 MP2/CBS 2.89 16.7 2.66 19.9 1.14 1.14 1.15 
 QCISD(T)/CBS 2.80 24.0 2.66 19.9 1.15 1.14 1.13 
H2O exp/6 N/A       
 MP2/A'DZ 3.12 29.6 2.59 53.1 1.28 1.32 1.34 
 MP2/CBS 3.14 14.1 2.59 53.1 1.13 1.21 1.23 
 QCISD(T)/CBS 3.02 21.7 2.59 53.1 1.13 1.18 1.20 
aCalculated via Eq. (14)  
bFrom Ref. 15 
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Table 6. Calculated Lennard-Jones parameters for several small targets + Hea 

 Calculated Tabulatedb zcalc/ztab   
Target σ, Å ε, cm–1 σ, Å ε, cm–1 300 K 1500 K 3000 K 
H 3.35 2.32 2.31 26.7 1.42 1.54 1.58 
H2 3.07 6.64 2.75 13.7 1.11 1.14 1.15 
C 2.57 39.3 2.94 18.8 0.88 0.85 0.84 
CH 3.09 21.1 2.66 19.9 1.36 1.36 1.36 
3CH2 3.47 9.72 3.19 26.6 0.99 1.03 1.04 
1CH2 3.36 16.1 3.19 26.6 1.01 1.03 1.04 
CH3 3.48 11.3 3.19 26.6 1.02 1.06 1.07 
CH4 3.41 14.9 3.13 28.7 1.05 1.08 1.09 
C2 3.35 23.1 3.10 21.9 1.18 1.18 1.18 
C2H 3.52 16.0 3.34 32.1 0.97 1.00 1.01 
C2H2 3.55 16.8 3.34 32.1 1.00 1.03 1.04 
C2H3 3.64 15.8 3.34 32.1 1.04 1.08 1.10 
C2H4 3.65 17.5 3.27 37.2 1.07 1.11 1.12 
C2H5 3.72 17.7 3.44 35.3 1.02 1.06 1.07 
C2H6 3.73 19.8 3.40 36.8 1.07 1.10 1.11 
O 2.79 12.7 2.66 19.9 1.01 1.03 1.04 
OH 2.89 16.7 2.66 19.9 1.14 1.14 1.15 
H2O 3.14 14.1 2.59 53.1 1.13 1.21 1.23 
O2 3.13 18.3 3.02 23.0 1.03 1.04 1.04 
HO2 3.20 19.8 3.02 23.0 1.10 1.10 1.11 
H2O2 3.26 21.6 3.02 23.0 1.15 1.16 1.16 
CO 3.33 14.7 3.14 22.5 1.04 1.06 1.06 
HCO 3.37 16.5 3.08 49.5 0.96 1.02 1.03 
H2CO 3.35 20.5 3.08 49.5 0.99 1.03 1.05 
H3CO 2.95 27.9 3.27 46.3 0.73 0.75 0.76 
CH2OH 3.54 17.6 3.13 45.3 1.06 1.11 1.12 
CH3OH 3.48 21.1 3.10 48.7 1.07 1.11 1.12 
CO2 3.30 25.0 3.17 34.7 1.01 1.03 1.03 
C2O 3.32 30.7 3.20 33.8 1.05 1.06 1.06 
HCCO 3.57 22.1 2.54 27.2 1.90 1.92 1.93 
CH2CO 3.55 24.3 3.27 46.3 1.03 1.07 1.08 
CH3CO 3.75 19.2 3.27 46.3 1.10 1.15 1.16 
CH2CHO 3.68 21.0 3.27 46.3 1.08 1.12 1.14 
CH3CHO 3.71 22.8 3.27 46.3 1.12 1.16 1.17 
aCalculated via Eq. (14) and using the MP2/CBS intermolecular potential 
bFrom Ref. 15 
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Figure Captions 

Fig. 1.  Isotropically averaged intermolecular potentials for three normal alkanes in He. 

The circles are the results of Eq. (9) for the exp/6 potential. The solid lines show 

Lennard-Jones curves based on the calculated parameters. The dotted lines show 

the minimum and maximum sampled energies along r. Two sets of results are 

shown for butane: one for the anti conformer equilibrium geometry (black) and 

one for the gauche conformer equilibrium geometry (blue). 

 

Fig. 2.  Anisotropic exp/6 intermolecular potentials for three normal alkanes in He. The 

lines show one-dimensional center-of-mass cuts for 20 different orientations. The 

circles indicate the local minima obtained via Eq. (14). The triangles indicate 

local minima from 20 full-dimensional trajectories. The initial conditions for the 

one-dimensional minimizations and for the trajectory results shown here are not 

related. 
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